Heating with PV Façade in a Passive House

<u>Georgios Dermentzis</u>, Fabian Ochs, Aleksandra Ksiezyk, Elisa Venturi, Mara Magni, Hannes Gstrein

University of Innsbruck Georgios.Dermentzis@uibk.ac.at

Arbeitsbereich für Energieeffizientes Bauen

Building and concept

Method and results

Primary energy evaluation

Building & Concept

- MFH in Innsbruck, Austria for temporary assisted living environment
- Passive House (9 kWh/m²a)
- 14 flats (~35 m² each) + common areas
- PV on the south façade 27.3 kWp
- Electric radiators for space heating
- Electric boilers for DHW
- Mechanical ventilation with heat recovery

Die Immobiliengesellschaft der Stadt Innsbruck

Building construction

Construction through prefabricated concrete elements

IIG – Innsbrucker Immobiliengesellschaft

01.10.2018

Georgios Dermentzis University of Innsbruck

4

Motivation

Investigate a direct electric system in combination with **PV** on the façade

- keep the investments costs low
- minimize the installation effort
- eliminate the distribution losses
- increase the share of on-site renewable energy production using the available space in the façade

Method

Calculation tool: PHPP

- 1. Compare the PV algorithm in PHPP vs Matlab/Simulink
- 2. Perform a **parametric study** in PHPP Installed decentralized system vs centralized heat pump systems by comparing:
 - a. Final energy (here electricity)
 - b. Primary energy (PE) using:
 - i. annual PE factors
 - ii. monthly PE factors

Parametric study

Case	System description	PV
А	Direct electric system with PV in the South façade	27.3 kWp – South facade
В	System of case A plus shower drain-water heat recovery	27.3 kWp – South facade
С	System of case A plus PV in the East and West façade	57.9 kWp – South, East & West facade
D	Reference centralized air-source heat pump (4-pipe distribution system)	-
E	Reference centralized groundwater-source heat pump (4-pipe distribution system)	-

8

Parametric study - PV on the facades

	Area [m²]			
	Façade	Façade without windows	PV	Covering percentage
South	374	285	211	74%
East	184	144	104	72%
West	242	215	133	62%

Kanton Bern Canton de Berne

PV yield - PHPP vs Matlab/Simulink

	Difference PHPP Matlab/Simulink		
Annual values	South façade	South, east & west façades	
Solar radiation	-1%	-3%	
BIPV yield	1%	-1%	

Good agreement between the tools

01.10.2018

Monthly electricity balance

01.10.2018

Annual electricity balance

01.10.2018

Primary energy factors

Primary energy results

- The most beneficial:
- Case C (dir. Electricity with PV on the South, West and East façade)
- Monthly instead of annual PE factors:
 - In cases with PV the PE increases more than in cases with HP

Because PV have low contribution during the heating period

Conclusions

Concept of a **Passive House** building using **direct electricity** for **heating** and **DHW** combined with **PV** on the **façade**

- The direct electricity systems combined with PV have similar or better (in case of PV on the South, West and East façade, assuming shadings losses of 10%) performance to heat pump systems without PV, because PV can cover the additional electricity required.
- Monthly instead of annual PE factors leads different ranking of the investigated concepts, since renewables have low contribution in winter, when demand is high.
 - E.g.: In case E (ground-water heat pump), in order to have the same PE as case A (reference), a PV system of 3.7 kWp is required using annual PE factors and 1.5 kWp using monthly PE factors.

Outlook

In-situ detailed monitoring

- o Energy performance
- Comfort conditions

Dynamic simulations

- Calculate the part of PV electricity that is used directly
- o Investigate grid interaction (load in winter, PV in summer)
- Investigate electric storage

Arbeitsbereich für Energieeffizientes Bauen

Thank you for your attention

Georgios.Dermentzis@uibk.ac.at

Gefördert von

